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ABSTRACT

A continuum structure function is a nondecreasing mapping from the unit
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1. INTRODUCTION

|n
Let C - {1,2,...,n} denote a set of components and let A = (0,] n .

A nondecreasing mapping y: A " [0,1] with y(O) = 0 and y(l) - 1 is said

to be a continuum structure function (CSF). If sup [(liX)-Y(OiX)] > 0
XEA

for each i E C, where (6i,X) denotes (Xi,... ,Xi 1 ,6,X+1 ,...,X), y is

said to be weakly coherent.

Definition

Let PI ...,Pr denote the r minimal path sets of a binary coherent

structure function. If

Y)= max min Xi
15<j<r iEP.

y is said to be a Barlow-Wu CSF [2].

Definition

Let {4, O<q<l} be a class of binary coherent structure functions such

that (Y ) is a left-continuous and non-increasing function of a for fixed

X where Y is the indicator of {X >M}u, i-1,2,...,n. If

Y(X) > a iff a(y) 1 (XEA,0<a<l),

y is said to be a Natvig CSF [3].

In this paper, we present axiomatic characterizations of the Barlow-Wu

and Natvig CSFs. In particular, we show that y is a Barlow-Wu CSF if and

only if it satisfies the following conditions:

6.
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Cl y is continuous

C2 P 0 and P c {O,a}n,O < a <a a -

C3 There is no nonempty open set A c A such that y is constant on A

C4 y is weakly coherent

where P = {XEAIy(X) > a whereas y(Y) < a for all Y<X} and where Y < X

means that Y < X but that Y # X.

Some consequences of these axioms are deduced in Section 2, and in

Section 3 we present our main results: an axiomatic characterization of

the Barlow-Wu CSF and an analogous characterization of the Natvig CSF.

Our approach was suggested by the Borges-Rodrigues characterizations of

the Barlow-Wu and Natvig multistate structure functions [51 though, as we

show in Section 4, their characterizations are incorrect.

2. SOME DEDUCTIONS FROM THE AXIOMS

Let U. = {XEAIY(X) >a} and L = {XEAIy(X) <a}, 0 < a < 1. Further,

define K = {XEAIy(X) <a whereas y(Y) > a for all Y > Z1, 0 < a < 1.• defi a K _ -

Proposition 2.1

Let y be a CSF.

() y is right (left)-continuous if and only if each U (L ) is closed.a a
(ii) If y is right (left)-continuous, then each P a (K ) is nonempty and

X E U (L ) if and only if X > (<) Y E P (K ).
- a a 01 01

(iii) If y is continuous, then y(P ) {a}, 0 < a < 1, and y(K ) {a},
a a

0
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Proof: The proofs of (i) and (iii) are straightforward; see [4] for the

proof of (ii).

Proposition 2.2

If y is a continuous CSF, conditions 02 and

C2' K j#0and K c{,l}n, 0< a <1

are equivalent.

Proof: Since y is continuous, each K is nonempty. We show that, if C2

holds, then 1~C{,l}n for all a E [0,1).a
Suppose, conversely, that for some a E [0,1) there exists a vector

Y E K asuch that Y f {a,l}n. Then there exists at least one component, k

say, such that Yk {a,l1. Either 0 < Y < a < 1 or 0 < a < Y < 1; wek-k k

consider these two cases separately.

Suppose, firstly, that 0 < Y k < a < 1. By Proposition 2.1, ryQ) = a

and yr(6kY > at if Y < 6 < a. Let y(6k'Q=~ hnCkX ~ ic

U is closed there exists, by Proposition 2.1, an X < (6k~ such that

)k'!

X EP. Now Y jU and so Y <Xk< 6. Thus 0< Y < X.k< 6< a < and

so X J {0F~, in contradiction to 02.

Suppose, now, that 0 < a < Y <1. AganyY .LtylY
_ k giT()=a Le lk9~)

6 > a. Since Y(xkY) is a continuous, nondecreasing function of x for

fixed Y),~~ it follows from the intermediate value theorem that, for

given with a < &< YoA6, there exists a w E (y" such that Y(wkY)=

Thus (wTY) E Uo and hence there exists an X < (war; such that XE P

NowY ( U and so X <. It follows thatO ac Y X wso k < k <w <a< <Yk <k-w

and hence X {0,n, in contradiction to C2.

C2 Ka 1 n :{,~,
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Thus, a continuous CSF satisfying C2 also satisfies C2'. A similar

argument verifies the converse.

Proposition 2.3

If y is a CSF which satisfies Cl, C2 and C3, then y({O,a}n) = {0,} for

all a E [0,1].

Proof: If a = 0 there is nothing to prove, so suppose that, for some

a E (0,1], there exists a vector X E 10,a}n such that = y() {O,a}.

It is easily seen that 0 < B < a and that X 0 0 or a, and hence we can

write

0 for j=l,2,. .. ,k
Xi. =
3 I a for j=k+l,...,n

for some k with I < k < n-1.

Since X E U n L, and both are closed, it follows from Proposition 2.1

that there exist a Z E P and a W E K such that Z < X < W. This ordering

will only hold if Z E {0, 0 }n - {0} satisfies Zi. = 0 for j=l,2,...,k and

if W E 81} {L} satisfies Wi . = 1 for J=k+l,...,n and so A - (ZIWI)X ... X
3

(Zn,Wn ) c A is open. Further, since Z E P and W E K , it follows that
n9 n '- 03- 1

* y(X) = 1 for all X E A, in contradiction to C3. Thus y(X) E {0,a} as

claimed.

* Proposition 2.4

If y is a CSF which satisfies Cl, C2 and C3, then P. = Ol for all

a E (0,1].

,..- .. . .. .- . , , . . .. .. " . . . . . ." _-. .- -.. . . . •. ".. . . .' .. " , " •, . -. •



* 5

Proof: Suppose that a < 1, otherwise there is nothing to prove, and let

XE P so that y(X) = a. Then X < -xand so y(X < y(1X). Since./~ a y(X) - y-) ic
1 1~

-X E {,Ol}n' it follows from Proposition 2.3 that y(-X) 1. We claim that

-!X E P
0- 1'

Suppose, conversely, that it P. Since U1 is closed, it follows

from Proposition 2.1 that there exists a W < -X such that W E P Consider
-

the vector aW E {O,a}n; it is easily seen that y(aW) = a and thus there

exists a vector aW < X such that aW E U . This contradicts the assumption

that X E P and hence -X E P as claimed. This holds for all X E P and
a G- 1- a

so P C P V

Similarly, it can be shown that aP C Pa"

3. THE CHARACTERIZATION THEOREMS

Theorem 3.1

A CSF y is of the Barlow-Wu type if and only if it satisfies conditions

Cl, C2, C3 and C4.

*Proof: It is easily verified that the Barlow-Wu CSF satisfies Cl, C2, C3

and C4. To prove the converse, observe that

y(X) > a - X > Y E P

Smin X > a for some Y E P
{i1y1=a} 1 a1

"max min X > a
YEP {i I Yi=a}

0

; . .; ... .j . - . . . .. ., 2 : - i ' . < " - . : :- . . - . - , ' . .' . . . .- • . ' . - -
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o-* max min X. > a by Proposition 2.4
YEaPI tilYi=a} -

*-- max min X, > a where Z =Y.
ZEP {iIzi=l} ~

This holds for all XE A and a E (0,1] and so

y(X) = max min X1.
ZEP1  {iIZ.=l}

Write P = X (1 ) '  X(N). X  and let T. = {iECX 11. By the definition

4 of Pit it is clear that each T. is nonempty and that T. G Tk for all

j,k=l,2,... ,N with j # k. Thus

y(X) max min X
l<j_<N iETJ

N
where each T. c C. Condition C4 ensures that UT. = C, completing the

j=l 3
proof.

Theorem 3.2

A CSF y is of the Natvig type if and only if it satisfies C2 and

- Cl' y is right-continuous

C4' For each i E C and all a E (0,1], there exists an X E A such

*"• that y(ai,) > a whereas y(Oi,X) < a for all 1 < a.

Proof: Baxter (3] proves that Natvig CSFs are right-continuous, and it is

readily seen that such functions satisfy C2 and C4'. Conversely, from the

preceding proof,
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y(X) > a~ max min 7 1
YEP {ilIY a) x

where Zi is the indicator of {XI>} (0<a<l, XEA). Write P =

{X(,l) ,X ( 'N(a)) } and let Ta = {iECI4 'J) a}, j=l,2,..,N(c).

Then y(X) > a if and only if 4)(Z ) - iwhereax --a

a (Za)= max min Z .
IS<j<N (a) iETa ai

3

We claim that the binary functions {' O<a<l} satisfy the conditions of the

" definition of the Natvig CSF.

It is clear that 4 is nondecreasing in each argument for all

a E (0,1] and that 4)a(Za) is nonincreasing in a for fixed X.

To verify left-continuity, it is sufficient to consider the point at

which the function decreases. Thus, suppose that y(X) = a (O<a<1); then

there exists an X' < X such that X' E P . Clearly, y(X') = a and hence

')c(Z'c i= 1 whereas, if a > a, y(X') < a and so 4" (Z') = 0. Thus 4)(Z) is

left-continuous as claimed.

Lastly, observe that, by C4', for each i E C and all a E (0,1], there

exists an X E A such that (iiZ) = 1 whereas a(c0iZa) = 0 and so each

4) is coherent.

This completes the proof. El

,°St- I
4:

'S
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4. SOME REMARKS ON THE BORGES-RODRICUES CHARACTERIZATION

Let S = {0,i .. M}, M > 1. A nondecreasing mapping (P: Sn 1+ S with

'(O) = 0 and D(M) = N is said to be a multistate structure function

(MSF). It is weakly coherent if max [((Mi, ) - v(OiX)] > 1 for each i E C.

If

'(P) max min X. (XESn)
l<j<r iEP. i I

where PI ... P are the r minimal path sets of a binary coherent structure

function, then 4 is said to be a Barlow-Wu MSF [1]. If 4)(X) > j if and only p

if p.(Yj) = 1 (XESn , j=l,2,... ,M) where {M .... ,qM} is a collection of

binary coherent structure functions such that .(Y.) is nonincreasing

in j for fixed X, and where Y.. is the indicator of {X.>j}, then (P is said
31

to be a Natvig MSF 16].

Borges and Rodrigues [5] present axiomatic characterizations of the

Barlow-Wu and Natvig MSFs in terms of the following conditions:

B1 For every X E Sn with 4'(X) > k > 1, there exists a Y E {O,k}n

such that Y < X and O(Y) > k

B2 4,(O,M}n ) = (O,M}

B3 4' is weakly coherent.

Borges and Rodrigues [5] claim

(1) 4) is a Barlow-Wu MSF if and only if it satisfies Bl, B2 and B3

(2) 4 is a Natvig MSF if and only if it satisfies B1 and B3.

Both claims are false as the following examples attest.

'" %*, "'°" ' "%' '"-"','° ""~~... .... ......................."'" "° °'-° %°*° " " -.. .. . . . . . . . . . . . . . . . . -. °.i•- " '
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Example 4.1

Consider the MSF [i: {0,1,2}2,, {0,1,2} defined as follows:

S(0,0) = 0 )i(0, ) = 0 D (0,2) = 2

D (1,0) = 0 DI(l,1) = 1 =1(1,2) 2

(D (2,0) = 2 (i(2,1) = 2 ( (2,2) = 2.
1 1

This satisfies Bi, B2 and B3 and yet is clearly not of the Barlow-Wu type

since the only Barlow-Wu MSFs of size two are X1AX2 and X1vX2. Notice in

particular that 4i provides a counter-example to Lemma 4 of [5].

Example 4.2

Let =(YiIY2)  11 and 2(Y21'Y22= Y21AY22 and define the MSF

" 2: {0,1,212 b- {0,1,2} as the function which satisfies D2(XlX 2  > j

if and-'only if (YjIYj2) = I where Yji is the indicator of {Xi>j}

(i,j,=l,2). This is clearly not a Natvig MSF since the binary function

is not coherent, but it is easily verified that T2 satisfies BI and B3.

7

! '
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